Современные финансовые средства

Crypto-blog.ru

Элементарные финансовые расчеты

По мере усложнения задач, стоящих перед финансовым менеджментом, сфера применения непрерывных процентов будет расширяться, так как при этом становится возможным использовать более мощный математический аппарат. Особенно наглядно это проявляется в случае непрерывных процентных ставок. В практике финансистов данный способ пока еще не занял должного места, что в какой-то мере объясняется его непри-вычностью, может быть, чересчур «отвлеченным» характером. Однако трезвый анализ показывает, что предположение о непрерывности реинвестирования начисленных процентов не так уж абстрактно и нереально. В самом деле, как для простых, так и для сложных процентов, факт непрерывности их начисления ни у кого не вызывает сомнений (годовая ставка 36 % означает 3 % в месяц, 0,1 % в день и т. д., т. е. можно начислять проценты хоть за доли секунды). Но точно такой же аксиомой для финансов является признание возможности мгновенного реинвестирования любых полученных сумм. Что же мешает совместить два этих предположения? В теории сумма начисленных процентов может (и должна) реинвестироваться сразу по мере ее начисления, т. е. непрерывно. В данном утверждении ничуть не меньше логики, чем в предположении, что реинвестирование должно производиться дискретно. Почему реинвестирование 1 раз в год считается более «естественным» чем 12 или 6 раз? Почему эта периодичность привязывается к календарным периодам (год, квартал, месяц), почему нельзя реинвестировать начисленные сложные проценты, скажем, 39 раз в год или 666 раз за период между двумя полнолуниями? На все эти вопросы ответ, скорее всего, будет один – так сложилось, так привычно, так удобнее. Но выше уже было отмечено, что практический расчет величины реальных денежных потоков (например, дивидендных или купонных выплат) и определение доходности финансовых операций – это далеко не одно и то же. Если привычнее и удобнее выплачивать купон по облигации два раза в год, то так и следует поступать. Но определять доходность этой операции более логично по ставке непрерывных процентов.

Например, по вкладу в размере 10 тыс. руб. начисляется 25 простых процентов в год. В конце первого года вклад возрастет до 12 500 руб. Доходность, измеренная как по простой (формула 2.2.12), так и сложной (2.2.14) процентной ставкам i, составит 25 % годовых. Однако, измеряя доходность по номинальной ставке j (2.2.15) при m = 2, получим лишь 23,61 %, так как в этом случае будет учтена потерянная вкладчиком возможность реинвестирования процентов хотя бы два раза в год. Если же измерить доходность по силе роста (2.2.18), то она окажется еще ниже – всего 22,31 %, так как теоретически можно реинвестировать начисленные проценты не два раза в год, а непрерывно. Перейти на страницу: 2 3 4 5 6 7